Halogen Bonds Formed between Substituted Imidazoliums and N Bases of Varying N-Hybridization.
نویسنده
چکیده
Heterodimers are constructed containing imidazolium and its halogen-substituted derivatives as Lewis acid. N in its sp³, sp² and sp hybridizations is taken as the electron-donating base. The halogen bond is strengthened in the Cl < Br < I order, with the H-bond generally similar in magnitude to the Br-bond. Methyl substitution on the N electron donor enhances the binding energy. Very little perturbation arises if the imidazolium is attached to a phenyl ring. The energetics are not sensitive to the hybridization of the N atom. More regular patterns appear in the individual phenomena. Charge transfer diminishes uniformly on going from amine to imine to nitrile, a pattern that is echoed by the elongation of the C-Z (Z=H, Cl, Br, I) bond in the Lewis acid. These trends are also evident in the Atoms in Molecules topography of the electron density. Molecular electrostatic potentials are not entirely consistent with energetics. Although I of the Lewis acid engages in a stronger bond than does H, it is the potential of the latter which is much more positive. The minimum on the potential of the base is most negative for the nitrile even though acetonitrile does not form the strongest bonds. Placing the systems in dichloromethane solvent reduces the binding energies but leaves intact most of the trends observed in vacuo; the same can be said of ∆G in solution.
منابع مشابه
The Nature of Halogen Bonds in [N∙∙∙X∙∙∙N]+ Complexes: A Theoretical Study
The effects of substituents on the symmetry and the nature of halogen bonds in [N∙∙∙X∙∙∙N]+-type systems are presented for the YC5H4N∙∙∙X∙∙∙NC5H5 (Y = NO2, CN, H, CH3, OCH3, OH, NH2, X = Cl, Br, I) complexes. Some structural parameters, energy data and electronic properties were explored with...
متن کاملUsing beryllium bonds to change halogen bonds from traditional to chlorine-shared to ion-pair bonds.
Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the structures, binding energies, and bonding characteristics of binary complexes HFBe:FCl, R2Be:FCl, and FCl:N-base, and of ternary complexes HFBe:FCl:N-base and R2Be:FCl:N-base for R = H, F, Cl; N-base = NH3, NHCH2, NCH. Dramatic synergistic cooperative effects have been found between the Be···F beryllium bonds and t...
متن کاملLinear free energy relationships in halogen bonds 3
Four models of halogen bonds were used to quantify this bond using the DFT B97D/6-311+G(d) computational level: para-substituted iodobenzenes, paraand meta-substituted bromobenzenes complexed with three simple Lewis bases (NH3, NCH and CNH), 1-bromo-4-substituted-bicyclo[2.2.2]octanes with NH3 and 3and 4-substituted pyridines complexed with BrCl and BrF. In addition, the combination of the para...
متن کاملHalogen-Bonded Co-Crystals of Aromatic N-oxides: Polydentate Acceptors for Halogen and Hydrogen Bonds
Seventeen new halogen-bonded co-crystals characterized by single crystal X-ray analysis are presented from 8 × 4 combinations using methyl-substituted pyridine N-oxides and 1,ω-diiodoperfluoroalkanes. The N−O group in six of 17 co-crystals is monodentate and 11 have μ-O,O bidentate halogen bond acceptor modes. Remarkably, the N−O group in co-crystals of 3-methyl-, 4-methyland 3,4-dimethylpyridi...
متن کاملCompetition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.
A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2017